
49

0022-4715/01/0700-0049$19.50/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 104, Nos. 1/2, 2001

Classification of Multiscaling in Fracture and
Fragmentation

A. Bershadskii1 , 2 and Emily S. C. Ching1

1Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
2 Present and permanent address: Machanaim Center, P.O. Box 39953, Ramat-Aviv 61398,
Tel-Aviv, Israel.

Received August 23, 1999; revised January 8, 2001

We propose a method to classify multifractal properties, which have been found
in many systems. We then study the multifractal properties previously found in
various models of fracture and fragmentation, and show explicitly that they
indeed fall into the two classes proposed in our method. Several interesting
features are also revealed.
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1. INTRODUCTION

In the last decade, the scaling properties of fracture and the related frag-
mentation processes have been actively investigated (see, for instance, ref. 1
and references therein). Multifractality has been found in various simple
models of fracture of disordered media just before the breakdown of the
system and in fragmentation after the system breaks.

One of the most successful approaches to model fracture of disordered
materials is to represent a continuous material by a lattice of bonds. In the
simplest models, the vectorial force and displacement are replaced respec-
tively by the scalar current and voltage passing through and across the
bond. Disorder has been introduced in different ways in different models.
In the random resistor network model, (2) each bond is assigned as a con-
ductor carrying a unit resistance with probability k or an insulator with
probability 1−k. For large k, the system will remain conducting or intact



as a whole. When k is less than some percolation threshold, the system
breaks down or ruptures, becoming insulating. In the fuse model, (3) all the
bonds in the lattice are originally identical resistors or fuses. A bond or
resistor will break or burn when the current passing through it is larger
than some threshold value and the threshold currents are randomly drawn
from some continuous distribution. As the external strain or voltage is
increased, the bonds will break one by one until the whole network fails,
that is, becomes insulating.

In the central force model, (3) the vectorial nature of fracture is rein-
stated in which the material is represented by a network of Hookean
springs. The springs can freely rotate around the nodes of the lattice and
will break when they are elongated or compressed beyond a certain
threshold. The threshold forces are again drawn from some continuous
distribution. No bending effects are taken into account in this model. With
an imposed external strain, the springs will break one by one until the
whole system fails as in the scalar fuse model.

Several models have been introduced to study fragmentation numeri-
cally. In these models, an object is described by an assembly of basic con-
stituents or building blocks which are either connected to each other via
elastic springs or beams, (4, 5) or interact with each other via some force
potential. (6, 7) The object is then subjected to some external force (4, 5) or
the constituents be given some specified initial velocities which mimic the
effect of the impact forces (6, 7) and the whole system evolves according to
Newtonian dynamics. The connection or bond between the constituents is
taken to be broken when some specific rules are satisfied.

Multifractal properties have been found in both fracture models at the
point of breakdown (2, 3) and fragmentation models. (5, 7) The scaling proper-
ties of the distribution of the fluctuating quantities of interest, say the
voltage and current distributions in the random resistor network and the
mass distribution of the fragments in the fragmentation models, have to be
characterized by a set of exponents. That is, the scaling exponents of the
moments of the distribution are not simply proportional to the order of the
moments.

In this paper, we propose a method to classify multifractality according
to the functional dependence of the exponents on the order of the moment.
Then we use this method to study the multifractal properties of the various
models of fracture and fragmentation. Several interesting features have been
found.

2. CLASSIFICATION OF MULTIFRACTALITY

Suppose the distribution of a certain fluctuating quantity of interest X
is multifractal. To characterize the multifractality, one studies the moments
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of this quantity OXpP, where p is the order of the moments. These moments
scale with some parameter a:

OXpP ’ aq(p) (1)

with exponents q(p). For example, in the random resistor network model,
the moments of the voltage distribution scale with the size of the net-
work. (2) The distribution is multifractal in that the exponents q(p) are not
simply proportional to p.

It is known that in the thermodynamic interpretation of multi-
fractality, (8, 9) p can be interpreted as the inverse of temperature. That is,
p ’ T −1. Therefore, it is interesting to check whether q(p) does indeed
exhibit a phase-transition-like behavior:

q(p) ’ (p−pc)c (2)

in the vicinity of some critical point pc. Equation (2) has been shown to
hold for the multifractal properties observed in a wide variety of systems
including random walk on linear fractals, diffusion limited aggregation,
and turbulence. (10) In this paper, we shall show explicitly that Eq. (2) also
holds for the multifractal properties found in the models of fracture and
fragmentation discussed in Section 1.

One can use Eq. (2) to classify multifractality depending on whether
the critical point pc is zero or not. The case of a finite non-zero pc corre-
sponds to the usual critical phenomena with a finite critical temperature Tc.
Since p is a dimensionless parameter, it is natural to normalize temperature
T by Tc to get pc=1. The other class is pc=0, which corresponds to an
infinite critical temperature. This can be taken as a transition from a state
of negative temperature to another state of positive temperature (see, for
instance, ref. 11).

Hence, we can classify multifractal properties into the following two
different types:

q(p) ’ (p−1)c (3)

in the vicinity of the critical point pc=1, and

q(p) ’ pc (4)

In the following, we shall use this method to study the multifractal
properties found in the various models of fracture and fragmentation.
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3. MULTIFRACTALITY AT THE POINT OF BREAKDOWN

The local strain or stress distribution just before the system breaks has
been found to possess multifractality. For a random resistor network, the
point of breakdown is naturally the percolation threshold. The local strain
distribution is given by the voltage distribution in the bonds of the
network. The moments of the voltage distribution are given by

OVpP=C
n(V)
N0
Vp, (5)

where n(V) is the number of bonds with a voltage drop V and N0 is the
total number of conducting bonds.

At the percolation threshold, the moments OVpP were found (2) to scale
with L, the size of the network:

OVpP ’ L −q(p) (6)

and the exponents q(p) are a nonlinear function of p. This nonlinearity
clearly demonstrates that the voltage distribution is multifractal.

On the other hand, for the fuse and the central force models, the point
of breakdown is the point when the last bond or spring is cut before the
whole system falls apart. The local stress distribution is given by the local
current distribution in the fuse model or the local forces distribution in the
central force model. The moments of these two distributions are given
respectively by

OipP=C
n(i)
N0
ip (7)

and

OfpP=C
n(f)
N0
fp (8)

where N0 is the total number of conducting bonds or intact springs. The
moments were also found to scale with the size of the lattice L, with expo-
nents that are again not simply proportional to p. (3)

To check whether the multifractal properties found in these models
can be classfied using our method proposed in Section 2, we show the
log–log plots of q(p) vs p and p−1 respectively for the three models in
Fig. 1. Data for the random resistor network model are taken from ref. 12
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Fig. 1. (a) q(p) vs p and (b) q(p) vs p−1 in log–log plots for the three models: Random
resistor network at the percolation threshold (circles), scalar fuse model (squares), and vector
central force model (triangles). The solid lines, which are best fits to the data points, show
that q(p) ’ pc for the random resistor network model and the central force model but
q(p) ’ (p−1)c instead for the fuse model. The dashed lines, joining the data points, are
guides to the eye.

and those for the fuse and central force models are taken from ref. 13. The
number of data points is small and the data extend over less than a decade.
Nevertheless, we can see that q(p) for the random resistor network and the
vector central force model are well described by Eq. (4) for p \ 1 while that
for the scalar fuse model has to be described by Eq. (3) for p \ 2. Thus, the
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dependence of q(p) on p in these models indeed falls into the two classes
proposed in our method.

Interestingly, the multifractality of the voltage distribution in the
random resistor network belongs to the class described by (4) with c % 0.89
while that of the current distribution in the fuse model belongs to the other
class described by (3) with c % 0.26. This result, therefore, suggests that the
nature of the multifractal properties of local strain or stress depends on the
details of how the system gets to the point of breakdown. For the central
force model, q(p) is better described by (4) than by (3) even though the
system gets to the point of breakdown in a similar fashion as that of the
fuse model. This, therefore, suggests that the nature of the multifractality
of the local stress distribution also depends on the vectorial character of the
stress field.

4. MULTIFRACTALITY AFTER BREAKDOWN

In the previous sections, we have studied the statistical properties of
the local stress or strain distribution just before the breakdown of the
system. One would expect that multifractality of this distribution would
result in multifractality of the fragments distribution after the system
breaks down (cf. ref. 14). This has indeed been found. (5, 7)

Fragmentation in collision of solids was numerically simulated using a
two-dimensional dynamical model of granular solids. (5) In this model, the
solid consists of unbreakable and undeformable grains that are connected
by elastic beams which can be broken according to a rule that takes into
account of stretching and bending of the connections.

In another numerical model of fragmenation, (7) the two-dimensional
object consists of N particles, which interact with each order pairwisely via
the Lennard-Jones potential. The effect of the fragmentation-induced forces
is represented by assigning the particles some specified initial velocities. The
fragmentation process is followed using molecular dynamics calculations. (15)

Each particle moves according to Newton’s laws of motion. As time evolves,
the particles distribute themselves in clusters or fragments of various sizes.

In both models, the fragment mass distribution was found to depend
on the input energy which is expressed in terms of a dimensionless param-
eter R. In ref. 5, R was taken as the square root of the ratio of the collision
and the binding energies while in ref. 7, R is the ratio of the initial kinetic
energy to the absolute value of the initial potential energy of the particles.

The moments of the mass distribution

OmpP=C
n(m)
N
mp (9)
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Fig. 2. q(p)/q(2) vs (p−1) in a log–log plot for the mass distribution of fragments in the
two fragmentation models: grain-beam model (circles) and Lennard-Jones-particle
model (squares). The straight lines, which are the least-square fit to the data points, indicate
that q(p) ’ (p−1)c for both models.

where n(m) is the number of fragments with mass m and N is the total
number of fragments, scale with R as

OmpP ’ Rq(p) (10)

The exponents q(p) are again not simply proportional to p showing that
the mass distribution is multifractal. (5, 16)

In Fig. 2, we plot q(p) vs p for the two fragmentation models. (17) We
see that q(p) ’ (p−1)c for both models with c % 1.15 for the grain-beam
model and c % 0.93 for the Lennard-Jones-particle model. Thus, although
the specific details of the models differ, the multifractality of the fragment
mass distribution belongs to the same class. Moreover, this multifractality
of the fragment mass distribution after the breakdown of the system
belongs to the same class as that of the local current distribution in the
scalar fuse model just before the breakdown of the system.

5. SUMMARY

For any system in which the distribution of the quantity of interest
exhibits multifractal properties, we have shown how to classify the mul-
tifractality according to the functional dependence of the scaling exponents
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q(p) of the moments of the distribution on the order p. Using the thermo-
dynamic interpretation of multifractality, this classification can be asso-
ciated with a phase-transition-like behavior of q(p) at either a finite or an
infinite critical temperature. We have then used this method to study the
multifractality previously found in several models of fracture and fragmen-
tation. We have shown explicitly that the multifractal properties found in
these models indeed fall into the two classes proposed in our method. Some
interesting features have also been revealed. We have found that the mul-
tifractality of the local strain or stress distribution in the random resistor
network at the percolation threshold is different from that of the fuse
model at the point when the last bond is cut before the whole system fails.
Hence, the nature of the multifractal properties of the local strain or stress
distribution, which is expected to contain useful information of the regions
that are responsible for the final breakdown of the system, depends on how
the system gets to the point of breakdown. The multifractal properties also
depend on the vectorial nature of the stress field. Moreover, multifractality
of the system just before breakdown leads to similar multifractality in the
system after breakdown as expected. Further understanding the physical
significance of the two classes of multifractality and the value of c will be
an interesting problem for future investigations.
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